优化作业4

1

若在点 xx^* 处 KKT 条件满足,{ai(x),iIE}\{a_i(x^*),i\in I^*\cup E\} 线性无关,证明:xx^*对应的 Lagrange 乘子 λ\lambda^* 唯一.

g=iAλiaig^* =\sum_{i \in \mathscr{A^*}}\lambda_i^*a_i^*

由于线性无关性,则 λi\lambda_i^* 作为其系数一定唯一

2

首先判断是否满足约束条件。x(1),x(3)x^{(1)},x^{(3)} 满足, x(2)x^{(2)} 不满足,所以不是解。

L(x,λ)=(x11)2+(x22)2λ1(x12+x2)λ2(6x1x2)λ3x1λ4x2L(x,\lambda) = (x_1-1)^2+(x_2-2)^2 - \lambda_1(-x_1^2+x_2) -\lambda_2 (6-x_1-x_2) - \lambda_3x_1-\lambda_4x_2

KKT:

Lx1=2x12+2λ1x1+λ2λ3=0\frac{\partial L}{\partial x_1} = 2x_1 - 2 +2\lambda_1x_1+\lambda_2-\lambda_3=0

Lx2=2x24λ1+λ2λ4=0λ1(x12+x2)=0λ2(6x1x2)=0λ3x1=0λ4x2=0λi0IE\frac{\partial L}{\partial x_2} = 2x_2 -4 -\lambda_1+\lambda_2-\lambda_4=0\\ \lambda_1(-x_1^2+x_2)=0\\ \lambda_2 (6-x_1-x_2)=0\\ \lambda_3x_1=0\\ \lambda_4x_2=0\\ \lambda_i \geq 0\\ I\cup E

对于 x(1)x^{(1)} ,起作用的约束为第一个,在此点有可行的下降方向为负梯度方向,所以不是最优解。
对于 x(2)x^{(2)},同样有可行的下降方向(1,0)(1,0)

3

1

L(x,λ)=(x11)2+(x22)2λ[(x11)25x2]L(x,\lambda) = (x_1-1)^2+(x_2-2)^2 - \lambda[(x_1-1)^2 - 5 x_2]

Lx1=2x12λ(2x12)=0\frac{\partial L}{\partial x_1} = 2x_1 - 2-\lambda(2x_1-2) =0

Lx2=2x23+5λ=0λ0(x11)25x2=0\frac{\partial L}{\partial x_2} = 2x_2 -3 +5\lambda = 0\\ \lambda \geq 0\\ (x_1-1)^2 - 5 x_2 = 0\\

x=(x1,x2)=(1,0)Tλ=35a(x)=(0,5)Tx^* = (x_1,x_2) = (1,0)^T\quad \lambda = \frac3 5\qquad a(x^*) = (0,-5)^T

F={(d1,0)Td10}W=[1λ1]=[251]dTWd>0\mathcal{F} = \{(d_1,0)^T|d_1\neq 0\}\\ W^* = \begin{bmatrix} 1-\lambda &\\ &1 \end{bmatrix} = \begin{bmatrix} \frac2 5&\\ &1 \end{bmatrix} \\ d^TW^*d > 0

所以是最优解

2

L(x,λ)=(x1+x2)2+2x1+x22+λ1(x1+3x24)+λ2(2x1+x23)λ3x1λ4x2L(x,\lambda) =(x_1+x_2)^2 +2x_1+x_2^2 + \lambda_1(x_1+3x_2-4) + \lambda_2 (2x_1+x_2-3) - \lambda_3x_1 - \lambda_4 x_2

Lx1=2x1+2x2+2+λ1+2λ2λ3=0\frac{\partial L}{\partial x_1} = 2x_1 +2x_2+2 +\lambda_1+2\lambda_2-\lambda_3 = 0

Lx2=4x2+2x1+3λ1+λ2λ4=0x1+3x2402x1+x230x10,x20λ1(x1+3x24)=0λ2(2x1+x23)=0λ3x1=0λ4x2=0λi0\frac{\partial L}{\partial x_2} = 4x_2 +2x_1 +3\lambda_1+\lambda_2-\lambda_4 = 0\\ x_1+3x_2-4 \leq 0\\ 2x_1+x_2-3 \leq 0\\ x_1 \geq 0, x_2\geq 0\\ \lambda_1(x_1+3x_2-4) = 0\\ \lambda_2 (2x_1+x_2-3) = 0\\ \lambda_3x_1 = 0\\ \lambda_4 x_2 = 0\\ \lambda_i\geq 0

x=(0,0)Tλ1=0,λ2=0,λ3=2,λ4=0x^* = (0,0)^T\quad \lambda_1 = 0,\lambda_2 = 0,\lambda_3 = 2,\lambda_4 =0
a3(x)=(1,0),a4(x)=(0,1)a_3(x^*) = (1,0),a_4(x^*) = (0,1)

F={ddTai=0,d0}=\mathcal{F} = \{d|d^Ta_i= 0,d\neq 0\} = \emptyset

所以是最优解


优化作业4
https://blog.jacklit.com/2024/12/10/优化作业4/
作者
Jack H
发布于
2024年12月10日
许可协议