1
PI(x,σ)=x12+x22+21σ[(min{2−2x1−x2,0})2+(min{x2−1,0})2]=⎩⎨⎧x12+x22x12+x22+21σ(2−2x1−x2)2x12+x22+21σ(x2−1)2x12+x22+21σ[(2−2x1−x2)2+(x2−1)2]++−++−−−
∂x1∂PI=⎩⎨⎧2x1(2+4σ)x1+2σx2−4σ2x1(2+4σ)x1+2σx2−4σ++−++−−−
∂x2∂PI⎩⎨⎧2x2(2+σ)x2+2σx1−2σ(2+σ)x2−σ(2+2σ)x2+2σx1−3σ++−++−−−
在 +− 和 −+ 中计算:
{x1=10σ2+9σ+28σ2+4σ,x2=2σ+22σx1=0,x2=2+σσ−++−
let σ→∞ : x=(0,1)
2
BL(x,μ)=2x1+3x2−μln(1−2x12−x22)
∂x1∂BL=2+μ1−2x12−x224x1=0∂x2∂BL=3+μ1−2x12−x222x2=0
x=11μ±μ2+11(1,3)
let μ→0
x=−1111(1,3)
3
一阶必要条件,即KKT条件.
minf(x)s.t.c(x)−s2=0
Φˉ(x,s,λ,σ)=f(x)−λ(c(x)−s2)+21σ(c(x)−s2)2x∗,s∗=argxminsminΦˉ(x,s,λ,σ)
∂s2∂Φˉ=λ−σc(x)+σs2=0∴λ∗=σ(c(x∗)−s∗2)∇xΦˉ∣x∗=∇f(x∗)−λ∗a(x∗)+σa(x∗)c(x∗)−σa(x∗)s2=∇f(x∗)=0
所以是原最优化问题的解,故满足必要条件。
4
G=222h=0AT=[112−1−11]b=[4−2]
- 变量消去法:
B={2,3},N={1}:x2=2−2x1,x3=−3x1
q^(xN)=14x12−8x1+4
x1∗=72x∗=(72,710,−76)T
2. Lagrange方法:
200−1−1020−210021−1−1−2100−11−100x1x2x2λ1λ2=000−42
得到同上x∗=(72,710,−76)T
5
min21(x−a)T(x−a)=min21xTx−aTx+21aTa⟺min21xTIx−aTx
Lagrange方法:
[I−A−AT0][xλ]=[a−b]
解方程即得证:
Ix−ATλ=a−Ax=−bAX−AATλ=Aab−AATλ=Aaλ∗=(AAT)−1(b−Aa)x∗=a+AT(AAT)−1(b−Aa)
6
f(x)=21xT[2−1−14]x+[−34]xa1T=(3,−2),a2T=(1,0),a3T=(0,1)b1=−6,b2=0,b3=0
- Round 1
let x1=(0,0),A={2,3} , solve:
minq^(d)=d12+2d22−d1d2−3d1+4d2s.t.d1=d2=0
[2−1−14][00]+[−34]=λ2(1)[10]+λ3(1)[01]
d1=(0,0),λ2(1)=−3,λ3(1)=4 丢弃最小的对应的约束,即约束2. A:=A\{q}={3}
solve:
minq^(d)=d12+2d22−d1d2−3d1+4d2s.t.d2=0
d1=(23,0)T=0 Calculate α1:
α1=min{1,i∈/A,aiTd1≤0minaiTd1bi−aiTx1}=1
x2=x1+α1d1=(23,0),A:={3}
2. Round 2
x2=(23,0),A={3}
solve:
minq^(d)=d12+2d22−d1d2−3d1+4d2s.t.d2=0
d2=(0,0)
[2−1−14][20]+[−34]=λ3(2)[01]
λ3(2)=4≥0∴x∗=x2=(23,0)
7
序列二次规划方法求解一般约束优化问题的的算法步骤
mins.t.f(x),ci(x)=0,i∈Eci(x)≥0,i∈I
- Step 1
给定初始点x0,计算Lagranian L(x,λ)=f(x)−λTc(x) 的初始Hesse阵近似W0,初始梯度近似g0
- Step 2
解二次规划子问题
mins.t.21dTWkd+gkTd+fk,ci(xk)+ai(xk)Td=0,i∈Eci(xk)+ai(xk)Td≥0,i∈I
得到新xk+1
3. Step 3
用BFGS或者DFP公式修正Wk,检查停止准则。goto Step 2