Quantom Mechanics Week 1

QM Week 1

1.9

Ψ(x,t)=Aea[(mx2/)+it]\Psi (x,t) = A e^{-a[(mx^2/\hbar)+ it]}

a

Ψ2dx=A2π2am=1\int |\Psi|^2 dx = A^2\sqrt{\frac{\pi \hbar}{2am}}=1

A=(2amπ)14A = \left ({\frac{2am}{\pi \hbar }}\right)^{\frac 1 4}

b

iΨt=22m2Ψx2+VΨi \hbar \frac{\partial\Psi}{\partial t} = -\frac{\hbar^2}{2m}\frac{\partial^2\Psi}{\partial x^2}+V\Psi

Ψt=iaΨ2Ψx2=[2am+(2amx)2]Ψ\frac{\partial \Psi}{\partial t} = -ia \Psi\qquad \frac{\partial^2 \Psi}{\partial x^2} = \left[-\frac{2am}{\hbar} + \left(\frac{2amx}{\hbar}\right)^2\right] \Psi

V(x)=2a2mx2\therefore V(x) = 2a^2 m x^2

c

  1. Since xΨ2x |\Psi|^2 is an odd function:

<x>=xΨ2dx=0<x> = \int_{-\infty}^\infty x |\Psi|^2 dx =0

<x2>=Ψx2Ψdx=A2x2exp(2ax2/)dx=4am\begin{aligned}<x^2> &= \int_{-\infty}^\infty \Psi^* x^2 \Psi dx\\&=\int_{-\infty}^\infty A^2 x^2 \exp(-2ax^2/\hbar)dx\\&=\frac{\hbar}{4am}\end{aligned}

  1. <p>=md<x>dt=0<p> = m\frac{d<x>}{dt} = 0

  2. <p2>=Ψ(ix)2Ψdx=am<p^2> = \int_{-\infty}^\infty \Psi^* (-i\hbar\frac{\partial}{\partial x})^2\Psi dx=am\hbar

  3. σx2=<x2><x>2=4am\sigma_x^2 = <x^2> - <x>^2 =\frac{\hbar}{4am}

    σp2=<p2><p>2=am\sigma_p^2 = <p^2> - <p>^2 = am\hbar

    σpσx=22\sigma_p\sigma_x = \frac{\hbar}2\geq\frac{\hbar}2

Which is consistent with the uncertainty principle.

1.14

a

Pab=abΦΦdxP_{ab} = \int_{a}^b \Phi^* \Phi dx

dPabdt=abtΦΦdx=i2m(ΨΨxΨxΨ)ab=J(a,t)J(b,t)\frac{dP_{ab}}{dt} = \int_{a}^b \frac{\partial}{\partial t}\Phi^* \Phi dx = \frac{i\hbar}{2m}\left(\Psi^* \frac{\partial \Psi}{\partial x}- \frac{\partial \Psi^*}{\partial x}\Psi\right)\Bigg|_a^b = J(a,t) - J(b,t)

JJ describes the probability at point xx time tt per unit time. It has the unit: s1s^{-1}

b

J(x,t)=i2m(Ψ2amxΨ+Ψ2amxΨ)=0J(x,t) = \frac{i\hbar}{2m}\left(-\Psi \frac{2amx}{\hbar}\Psi^*+\Psi^* \frac{2amx}{\hbar}\Psi\right)=0

1.15

ddtΨ1Ψ2dx=Ψ1tΨ2+Ψ1Ψ2tdx=(i2m2Ψ1x2+iVΨ1)Ψ2+Ψ1(i2m2Ψ2x2iVΨ2)dx=i2m(2Ψ1x2Ψ2+Ψ12Ψ2x2)dx=i2m(Ψ1xΨ2+Ψ1Ψ2x)=0\begin{aligned}\frac{d}{dt}\int_{-\infty}^\infty \Psi_1^*\Psi_2dx & = \int_{-\infty}^\infty \frac{\partial\Psi_1^*}{\partial t}\Psi_2+ \Psi_1^* \frac{\partial \Psi_2}{\partial t}dx\\ &=\int_{-\infty}^\infty\left(-\frac{i\hbar}{2m}\frac{\partial^2\Psi_1^*}{\partial x^2}+\frac{iV}\hbar \Psi_1^*\right)\Psi_2 + \Psi_1\left(\frac{i\hbar}{2m}\frac{\partial^2\Psi_2}{\partial x^2}- \frac{iV}\hbar\Psi_2\right)dx\\ &=\int_{-\infty}^\infty \frac{i\hbar}{2m}\left(-\frac{\partial^2\Psi_1^*}{\partial x^2}\Psi_2+\Psi_1^*\frac{\partial^2\Psi_2}{\partial x^2}\right)dx\\ &=\frac{i\hbar}{2m}\left(-\frac{\partial\Psi_1^*}{\partial x}\Psi_2+\Psi_1^*\frac{\partial\Psi_2}{\partial x}\right)\Bigg |_{-\infty}^\infty\\ &=0 \end{aligned}

1.16

a

Ψ2dx=aaA2(a2x2)2dx=1\int |\Psi|^2 dx = \int_{-a}^a A^2(a^2-x^2)^2dx =1

A=1516a5A = \sqrt{\frac{15}{16a^5}}

b

<x>=aaxA2(a2x2)2dx=0<x> = \int_{-a}^a xA^2(a^2-x^2)^2dx=0

c

<p>=aaΨ(ix)Ψdx=aa2iA2x(a2x2)dx=0\begin{aligned}<p> &= \int_{-a}^a \Psi^* (-i\hbar \frac{\partial }{\partial x})\Psi dx\\ &=\int_{-a}^a 2i\hbar A^2 x(a^2-x^2)dx\\&=0 \end{aligned}

d

<x2>=aax2A2(a2x2)2dx=a27<x^2> = \int_{-a}^a x^2A^2(a^2-x^2)^2dx=\frac{a^2}{7}

e

<p2>=aaA2(a2x2)(ix)2(a2x2)dx=aa2A22(a2x2)dx=522a2\begin{aligned}<p^2> &= \int_{-a}^a A^2(a^2-x^2)(-i\hbar \frac{\partial }{\partial x})^2(a^2-x^2)dx\\ &=\int_{-a}^a 2A^2\hbar^2(a^2-x^2)dx\\ &=\frac{5\hbar^2}{2a^2} \end{aligned}

f

σx=<x2><x>2=a27\sigma_x = \sqrt{<x^2> - <x>^2 }= \sqrt\frac{a^2}{7}

g

σp=<p2><p>2=522a2\sigma_p = \sqrt{<p^2>-<p>^2} = \sqrt\frac{5\hbar^2}{2a^2}

h

σpσx=5142\sigma_p\sigma_x = \sqrt{\frac 5 {14}}\hbar\geq \frac \hbar 2

1.17

a

dPdt=ΨxΨ+ΨΨxdx=(i2m2Ψx2+V0iΨΓΨ)Ψ+Ψ(i2m2Ψx2V0iΨΓiΨ)dx=i2m(2Ψx2Ψ+Ψ2Ψx2)2ΓΨΨdx=i2m(2Ψx2Ψ+Ψ2Ψx2)dx2ΓΨΨdx=2ΓP\begin{aligned} \frac{dP}{dt} &= \int \frac{\partial \Psi^*}{\partial x}\Psi+\Psi^* \frac{\partial \Psi}{\partial x}dx\\ &=\int \left(\frac{-\hbar i}{2m}\frac{\partial^2 \Psi^*}{\partial x^2} + \frac{V_0i\Psi^*}{\hbar} - \frac{\Gamma \Psi^*}{\hbar}\right)\Psi + \Psi^* \left(\frac{\hbar i}{2m}\frac{\partial^2 \Psi}{\partial x^2} - \frac{V_0i\Psi}{\hbar} - \frac{\Gamma i \Psi}{\hbar}\right)dx\\ &=\int \frac{i\hbar}{2m}\left(-\frac{\partial^2 \Psi^*}{\partial x^2}\Psi + \Psi^* \frac{\partial^2 \Psi}{\partial x^2}\right) - \frac{2\Gamma}\hbar \Psi^*\Psi dx\\ &=\int \frac{i\hbar}{2m}\left(-\frac{\partial^2 \Psi^*}{\partial x^2}\Psi + \Psi^* \frac{\partial^2 \Psi}{\partial x^2}\right)dx - \frac{2\Gamma}\hbar \int\Psi^*\Psi dx\\ &=- \frac{2\Gamma}\hbar P\end{aligned}

b

Solve the ODE of (a):

P(t)=cexp(2Γt)P(t) = c \exp(-\frac{2\Gamma}\hbar t)

assume that c=1c=1, the lifespan τ\tau is: $$\tau =\frac\hbar{2\Gamma}$$


Quantom Mechanics Week 1
https://blog.jacklit.com/2025/02/24/qm_hw1/
作者
Jack H
发布于
2025年2月24日
许可协议