QM Week 1
1.9
Ψ(x,t)=Ae−a[(mx2/ℏ)+it]
a
∫∣Ψ∣2dx=A22amπℏ=1
A=(πℏ2am)41
b
iℏ∂t∂Ψ=−2mℏ2∂x2∂2Ψ+VΨ
∂t∂Ψ=−iaΨ∂x2∂2Ψ=[−ℏ2am+(ℏ2amx)2]Ψ
∴V(x)=2a2mx2
c
- Since x∣Ψ∣2 is an odd function:
<x>=∫−∞∞x∣Ψ∣2dx=0
<x2>=∫−∞∞Ψ∗x2Ψdx=∫−∞∞A2x2exp(−2ax2/ℏ)dx=4amℏ
-
<p>=mdtd<x>=0
-
<p2>=∫−∞∞Ψ∗(−iℏ∂x∂)2Ψdx=amℏ
-
σx2=<x2>−<x>2=4amℏ
σp2=<p2>−<p>2=amℏ
σpσx=2ℏ≥2ℏ
Which is consistent with the uncertainty principle.
1.14
a
Pab=∫abΦ∗Φdx
dtdPab=∫ab∂t∂Φ∗Φdx=2miℏ(Ψ∗∂x∂Ψ−∂x∂Ψ∗Ψ)ab=J(a,t)−J(b,t)
J describes the probability at point x time t per unit time. It has the unit: s−1
b
J(x,t)=2miℏ(−Ψℏ2amxΨ∗+Ψ∗ℏ2amxΨ)=0
1.15
dtd∫−∞∞Ψ1∗Ψ2dx=∫−∞∞∂t∂Ψ1∗Ψ2+Ψ1∗∂t∂Ψ2dx=∫−∞∞(−2miℏ∂x2∂2Ψ1∗+ℏiVΨ1∗)Ψ2+Ψ1(2miℏ∂x2∂2Ψ2−ℏiVΨ2)dx=∫−∞∞2miℏ(−∂x2∂2Ψ1∗Ψ2+Ψ1∗∂x2∂2Ψ2)dx=2miℏ(−∂x∂Ψ1∗Ψ2+Ψ1∗∂x∂Ψ2)−∞∞=0
1.16
a
∫∣Ψ∣2dx=∫−aaA2(a2−x2)2dx=1
A=16a515
b
<x>=∫−aaxA2(a2−x2)2dx=0
c
<p>=∫−aaΨ∗(−iℏ∂x∂)Ψdx=∫−aa2iℏA2x(a2−x2)dx=0
d
<x2>=∫−aax2A2(a2−x2)2dx=7a2
e
<p2>=∫−aaA2(a2−x2)(−iℏ∂x∂)2(a2−x2)dx=∫−aa2A2ℏ2(a2−x2)dx=2a25ℏ2
f
σx=<x2>−<x>2=7a2
g
σp=<p2>−<p>2=2a25ℏ2
h
σpσx=145ℏ≥2ℏ
1.17
a
dtdP=∫∂x∂Ψ∗Ψ+Ψ∗∂x∂Ψdx=∫(2m−ℏi∂x2∂2Ψ∗+ℏV0iΨ∗−ℏΓΨ∗)Ψ+Ψ∗(2mℏi∂x2∂2Ψ−ℏV0iΨ−ℏΓiΨ)dx=∫2miℏ(−∂x2∂2Ψ∗Ψ+Ψ∗∂x2∂2Ψ)−ℏ2ΓΨ∗Ψdx=∫2miℏ(−∂x2∂2Ψ∗Ψ+Ψ∗∂x2∂2Ψ)dx−ℏ2Γ∫Ψ∗Ψdx=−ℏ2ΓP
b
Solve the ODE of (a):
P(t)=cexp(−ℏ2Γt)
assume that c=1, the lifespan τ is: $$\tau =\frac\hbar{2\Gamma}$$