Quantom Mechanics Week 3

QM Week 3

2.36

Consider x[a,a]x\in [-a,a], following steps 2.22 ~ 2.31 :
The only changes are the boundary conditions 2.26 : ψ(a)=ψ(a)=0\psi(-a) = \psi(a) = 0 :

Asin(ak)+Bcos(ak)=Asin(ak)+Bcos(ak)=0A\sin(-ak) + B\cos(-ak) = A\sin(ak) + B\cos(ak) = 0

    {Asin(ak)=0Bcos(ak)=0\implies \begin{cases}A\sin(ak) = 0\\ B\cos(ak) = 0 \end{cases}

Case 1: if B=0,A0,sin(ak)=0B = 0,\,A\neq 0,\,\sin (ak) = 0

kn=nπa,n=1,2,k_n = \frac{n\pi}a,\quad n = 1,2,\ldots

En=n2π222ma2E_n = \frac{n^2\pi^2\hbar^2}{2ma^2}

aaA2sin2(kx)dx=A2a=1    A=1a\int_{-a}^a |A|^2 \sin^2(kx)dx = |A|^2 a = 1 \implies A = \sqrt{\frac 1 a}

ψn(x)=1asin(nπax)\psi_n (x)= \sqrt\frac{1}{a} \sin(\frac{n\pi }a x)

Case 2: if A=0,B0,cos(ak)=0A=0,\,B\neq 0,\, \cos(ak) = 0

kn=(2n1)π2a,n=1,2,k_n = \frac{(2n-1)\pi}{2a},\quad n = 1, 2,\ldots

En=(2n1)22π28ma2E_n = \frac{(2n-1)^2 \hbar^2\pi^2}{8ma^2}

aaA2cos2(kx)dx=A2a=1    A=1a\int_{-a}^a |A|^2 \cos^2(kx)dx = |A|^2 a =1 \implies A = \sqrt\frac{1}a

ψn(x)=1acos((2n1)π2ax)\psi_n(x) = \sqrt\frac 1 a \cos(\frac{(2n-1)\pi}{2a}x)

2.38

a

2.18 :

Ψn(x,t)=2asin(nπax)exp[i(n2π22ma2)t]\Psi_n (x,t) = \sqrt\frac 2 a \sin(\frac{n\pi}a x )\exp \left[-i\left(\frac{n^2\pi^2 \hbar}{2ma^2}\right)t\right ]

Ψn(x,0)=2asin(nπax)\Psi_n (x, 0) = \sqrt\frac 2 a \sin(\frac{n\pi}a x )

Ψn(x,T)=2asin(nπax)exp[i(n2π22ma2)4ma2π]=2asin(nπax)exp(2n2πi)=Ψn(x,0)\begin{aligned} \Psi_n (x,T) &= \sqrt\frac 2 a \sin(\frac{n\pi}a x )\exp \left[-i\left(\frac{n^2\pi^2 \hbar}{2ma^2}\right)\frac{4ma^2}{\pi \hbar}\right ]\\ &=\sqrt\frac 2 a \sin(\frac{n\pi}a x ) \exp (-2n^2 \pi i)\\ &=\Psi_n (x,0) \end{aligned}

Ψ(x,T)=cnΨn(x,T)=cnΨn(x,0)=Ψ(x,0)\Psi(x,T) = \sum c_n \Psi_n (x,T) = \sum c_n \Psi_n(x,0) = \Psi(x,0)

b

E=12mv2,2a=tv,  t=a2mEE = \frac 1 2 mv^2 ,2a = tv,\;\therefore t = a \sqrt \frac{2m}{E}

c

t=Tt = T :

E=π228ma2E = \frac{\pi^2\hbar^2}{8ma^2}

2.40

a

ξ=mωx\xi = \sqrt{\frac{m\omega}\hbar}x
According to 2.86 :

ψn(x)=(mωπ)1/412nn!Hn(ξ)eξ2/2\psi_n (x) = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4}\frac{1}{\sqrt{2^n n!}}H_n(\xi) e^{-\xi^2/2}

Denote (mωπ)1/4\left(\frac{m\omega}{\pi\hbar}\right)^{1/4} as α\alpha ,

ψ0=αeξ2/2ψ1=α2ξeξ2/2ψ2=α(2ξ212)eξ2/2\psi_0 = \alpha e^{-\xi^2/2}\qquad \psi_1 = \alpha\sqrt 2\xi e^{-\xi^2/2} \qquad \psi_2 = \alpha (\sqrt 2 \xi^2 - \frac{1}{\sqrt 2})e^{-\xi^2/2}

ψ(x,0)=Aexp(mω2x2)4Amωxexp(mω2x2)+4Amω2x2exp(mω2x2)=Aeξ2/24Aξeξ2/2+4Aξ2eξ2/2=Aα(3ψ022ψ1+22ψ2)\begin{aligned} \psi(x,0) &= A \exp(-\frac{m\omega}{2\hbar}x^2) -4A\sqrt{\frac{m\omega}\hbar}x \exp(-\frac{m\omega}{2\hbar}x^2)+ 4A\frac{m\omega}{2\hbar}x^2\exp(-\frac{m\omega}{2\hbar}x^2)\\ & = A e^{- \xi^2/2 } - 4A \xi e^{- \xi^2/2 } + 4A \xi^2 e^{- \xi^2/2 }\\ & = \frac{A}\alpha (3 \psi_0 -2\sqrt 2 \psi_1 + 2\sqrt 2 \psi_2 ) \end{aligned}

1=cn2=A2α2(9+8+8)A=(mωπ)1/45;  c1=35,c2=225,c3=2251 = \sum |c_n|^2 = \frac{A^2}{\alpha^2}(9+8+8)\\\therefore A = \frac{\left(\frac{m\omega}{\pi\hbar}\right)^{1/4}}5;\; c_1 = \frac 3 5,\, c_2 = -\frac{2\sqrt 2}{5},\, c_3 = \frac{2\sqrt 2}{5}

b

The possible energies are: E0=12ω,E1=32ω,E2=52ωE_0=\frac 1 2 \hbar\omega, E_1 = \frac 3 2 \hbar \omega , E_2 = \frac 5 2 \hbar \omega
With probabilities : $ P_0 = |c_0|^2 = \frac{9}{25},P_2 = \frac 8{25},P_3 =\frac 8{25}$
The expectation value of energy is:

H=cn2En=7350ω\langle H \rangle = \sum |c_n|^2 E_n = \frac{73}{50}\hbar \omega

c

T=πωT = \frac \pi\omega

2.41

Since it is impossible for the partical to appear at x<0x< 0 , thus there should be no even peaces in the wave function.

En=(2n12)ω,n=1,2,E_n = (2n-\frac 1 2) \hbar \omega,\quad n = 1,2,\ldots


Quantom Mechanics Week 3
https://blog.jacklit.com/2025/03/10/qm_hw3/
作者
Jack H
发布于
2025年3月10日
许可协议