QM Week 4
2.20
a
∫ψ∗ψdx=∫A2e−2a∣x∣dx=1⟹A=a
Ψ(x,0)=ae−a∣x∣
b
ϕ(k)=2π1∫Ψ(x,0)e−ikxdx=2π(a2+k2)2aa
c
Ψ(x,t)=2π1∫ϕ(k)ei(kx−2mℏk2t)dk=πaa∫a2+k21ei(kx−2mℏk2t)dk
d
a→∞limϕ(k)=πa2≃0
a→0limϕ(k)=∞
2.21
a
1=∫Ψ∗Ψdx=A2∫e−2ax2dx=A22aπ⟹A=(π2a)1/4
b
ϕ(k)=2π1∫Ψ(x,0)e−ikxdx=2π1∫Ae−a∣x∣e−ikxdx
Ψ(x,t)=2π1∫ϕ(k)ei(kx−2mℏk2t)dk=2π1∫Ae−ax2ei(kx−2mℏk2t)dk=2πAe−ax2∫ei(kx−2mℏk2t)dk=
拼尽全力无法积分
c
if
Ψ(x,t)=(π2a)1/4γ1e−ax2/γ2γ=1+(2iℏat/m)
∣Ψ∣2=π2ωe−2ω2x2
d
⟨x⟩=∫x∣Ψ∣2dx=0
⟨p⟩=mdtd⟨x⟩=0
⟨x2⟩=∫x2∣Ψ∣2dx=4ω21
⟨p2⟩=aℏ2
σx=⟨x2⟩−⟨x⟩2=2ω1
σp=⟨p2⟩−⟨p⟩2=aℏ2
σxσp=2ωaℏ=2ℏ1+(2ℏat/m)2≥2ℏ
2.24
⟨x⟩=⟨p⟩=0
⟨x2⟩=2∫ℏ2mαx2e−2mα/ℏ2xdx=2(mα)2ℏ4
σxσp=⟨x2⟩⟨p2⟩=22ℏ≥2ℏ
2.25
ψ1(x)=ℏmαe−mα∣x∣/ℏ2=Ce−mα∣x∣/ℏ2
ψ2(x)=Aeikx+Be−ikx={eikx+Re−ikxTeikxx≤0x>0
C1⟨ψ1,ψ2⟩1=R+T=C1∫ψ1∗ψ2dx=∫−∞0(eikx+Re−ikx)e−mα∣x∣/ℏ2dx+∫0∞Teikxe−mα∣x∣/ℏ2dx=ik+mα/ℏ2−1+ik−mα/ℏ2R+ik−mα/ℏ2T=0
2.27
a
Case 1, where the wave function is even:
ψ(x)=⎩⎨⎧BekxC(ekx+e−kx)Be−kxx<−a−a<x<ax>a
Boundary condition (continuity):
Be−ak=C(e−ak+eak)
Schorodinger Equation:
−2mℏ2dx2d2ψ+α[δ(x+a)+δ(x−a)]ψ=Eψ
take the integral on [−a−ε,−a+ε] and [a−ε,a+ε] , and let ε→0 :
−2mℏ2dxdψ+α∫δ(x+a)dx+α∫δ(x−a)dx=E∫ψdx
Δ(dxdψ)−a=ℏ22mε→0lim∫−a−ε−a+εαδ(x+a)ψ(x)dx=−ℏ22mαψ(−a)
The same applies at a :
Δ(dxdψ)a=−ℏ22mαψ(a)
According to the form of ψ :
dxdψ=⎩⎨⎧BkekxC(kekx−ke−kx)−Bke−kxx<−a−a<x<ax>a
dxdψa−dxdψa+∴Δ(dxdψ)a=C(keak−ke−ak)=−Bke−ak=−Bke−ak−C(keak−ke−ak)
The same appies at −a :
Δ(dxdψ)−a=−Bke−ak+C(ke−ak−keak)
Solve the equation:
{−ℏ22mαψ(a)=−Bke−ak−C(keak−ke−ak)−ℏ22mαψ(−a)=−Bke−ak+C(ke−ak−keak)
⟹ℏ2−2mαC(eak+e−ak)ℏ2mα(e2ak+1)=−2Ckeak=ke2ak#1
E=−2mℏ2k2
Case 2, where the wave function is odd:
ψ(x)=⎩⎨⎧BekxC(ekx−e−kx)−Be−kxx<−a−a<x<ax>a
Boundary condition (continuity):
Be−ak=C(e−ak−eak)
Repeat the steps in case 1, we get:
ℏ2mα(e2ak−1)=ke2ak#2
E=−2mℏ2k2
The number of bound states are the number of solutions to equations #1 and #2 accordingly.
b
- When α=ℏ2/ma :
For case 1:
ak=1+e−2ak,ak≃1.109
For case 2:
ak=1−e−2ak,ak≃0.797
- When α=ℏ2/4ma :
For case 1:
2ak=1+e−2ak,ak≃0.640
For case 2:
2ak=1−e−2ak,ak=0not possible
The according energy states can be caculated with E=−ℏ2k2/2m .
c
- When a→0 , there could only be one bound state, which takes the even wave function.
1+e−2ak=mαℏ2k⟹a→0limk=ℏ22mα⟹E=−ℏ22mα2
The energy is the same to where V(x)=−2αδ(x) , as if the two heaps of the delta functions are now merged into one.
- When a→∞, there are two bound states.
For case 1:
1+e−2ak=mαℏ2k⟹a→∞limk=ℏ2mα⟹E=−2ℏ2mα2
For case 2:
1−e−2ak=mαℏ2k⟹a→∞limk=ℏ2mα⟹E=−2ℏ2mα2
2.28
Consider the particle traveling from left to right, we have the wave function:
ψ(x)=⎩⎨⎧Aeikx+Be−ikxCeikx+De−ikxFeikxx<−a−a<x<ax>a
Boundary conditions(continuity):
Ae−iak+BeiakCeiak+De−iak=Ce−iak+Deiak=Feiak
let β=e−2iak
βA+BC+βD=βC+D=F
Δψ′∣−a=−ℏ2mαψ(−a) :
(Cik−Aik)e−ika−(Dik−Bik)eika=−ℏ2mα(Ae−ika+Beika)
β(C−A)−D−B=kℏ2imα(βA+B)
Δψ′∣a=−ℏ2mαψ(a) :
(F−C)ikeika+Dike−ika=−ℏ2mαFika
F−C+βD=kℏ2imαF
let γ=kℏ2imα
According to equation (1) to (4) and assume A=1 for computational ease:
10−1−γ0−β1β−1−1β−1β0−101−γBCDF=−β0(γ+1)β0
T=∣A∣2∣F∣2=∣F∣2
这周作业是我抄答案都懒得抄完的level. 最后两题对着答案写的都写不明白 , 用 mathematica 倒腾半天才算出来. 🥲🥲🥲