Quantom Mechanics Week 4

QM Week 4

2.20

a

ψψdx=A2e2axdx=1    A=a\int \psi^* \psi dx = \int A^2 e^{-2a|x|} dx = 1\implies A = \sqrt a

Ψ(x,0)=aeax\Psi(x,0) = \sqrt a e^{-a|x|}

b

ϕ(k)=12πΨ(x,0)eikxdx=2aa2π(a2+k2)\phi(k) = \frac{1}{\sqrt{2\pi}} \int \Psi(x,0) e^{-ikx}\, dx= \frac{2a\sqrt a }{\sqrt{2\pi}(a^2+k^2)}

c

Ψ(x,t)=12πϕ(k)ei(kxk22mt)dk=aaπ1a2+k2ei(kxk22mt)dk\begin{aligned} \Psi(x,t) &= \frac{1}{\sqrt{2\pi}}\int \phi(k)e^{i(kx - \frac{\hbar k^2}{2m}t)} \, dk \\ & = \frac{a\sqrt a }{\pi} \int\frac{1}{a^2+k^2} e^{i(kx-\frac{\hbar k^2}{2m}t)} \, dk \\ \end{aligned}

d

limaϕ(k)=2πa0\lim_{a\to \infty} \phi(k) = \sqrt\frac{2}{\pi a}\simeq 0

lima0ϕ(k)=\lim_{a\to0}\phi(k) = \infty

2.21

a

1=ΨΨdx=A2e2ax2dx=A2π2a    A=(2aπ)1/41 = \int \Psi^* \Psi dx = A^2 \int e^{-2ax^2} \, dx = A^2\sqrt\frac{\pi}{2a}\\ \implies A = \left(\frac{2a}{\pi}\right)^{1/4}

b

ϕ(k)=12πΨ(x,0)eikxdx=12πAeaxeikxdx\phi(k) = \frac{1}{\sqrt{2\pi}}\int \Psi(x,0) e^{-ikx}\, dx= \frac{1}{\sqrt{2\pi}}\int A e^{-a|x|} e^{-ikx} \, dx\\

Ψ(x,t)=12πϕ(k)ei(kxk22mt)dk=12πAeax2ei(kxk22mt)dk=Aeax22πei(kxk22mt)dk=\begin{aligned} \Psi(x,t) &= \frac{1}{\sqrt{2\pi}}\int \phi(k)e^{i(kx - \frac{\hbar k^2}{2m}t)} \, dk \\ & = \frac{1}{\sqrt{2\pi}} \int Ae^{-ax^2} e^{i(kx-\frac{\hbar k^2}{2m}t)} \, dk \\ & = \frac{Ae^{-ax^2}}{\sqrt{2\pi}} \int e^{i(kx-\frac{\hbar k^2}{2m}t)} \, dk \\ & = \end{aligned}

拼尽全力无法积分

c

if

Ψ(x,t)=(2aπ)1/41γeax2/γ2γ=1+(2iat/m)\Psi(x,t) = \left(\frac{2a}\pi\right)^{1/4}\frac{1}\gamma e^{-ax^2/\gamma^2}\qquad \gamma = \sqrt{1+(2i\hbar a t/m)}

Ψ2=2πωe2ω2x2|\Psi|^2 = \sqrt \frac{2}{\pi}\omega e^{-2\omega^2 x ^2}

d

x=xΨ2dx=0\langle x \rangle = \int x|\Psi|^2 dx = 0

p=mdxdt=0\langle p \rangle = m \frac{d\langle x \rangle}{dt} = 0

x2=x2Ψ2dx=14ω2\langle x^2 \rangle = \int x^2|\Psi|^2 dx = \frac{1}{4\omega^2}

p2=a2\langle p^2 \rangle = a\hbar^2

σx=x2x2=12ω\sigma_x = \sqrt{\langle x^2 \rangle - \langle x \rangle^2} = \frac{1}{2\omega}

σp=p2p2=a2\sigma_p = \sqrt{\langle p^2 \rangle - \langle p \rangle^2} = \sqrt{a\hbar^2}

σxσp=a2ω=1+(2at/m)222\sigma_x\sigma_p = \frac{\sqrt a\hbar}{2\omega} = \frac{\hbar \sqrt{1+(2\hbar a t /m )^2}}{2}\geq \frac \hbar 2

2.24

x=p=0\langle x \rangle = \langle p \rangle = 0

x2=2mα2x2e2mα/2xdx=42(mα)2\langle x^2 \rangle = 2 \int \frac{m\alpha}{\hbar^2} x^2 e^{-2m\alpha/\hbar^2 x} dx = \frac{\hbar^4}{2(m\alpha)^2}

σxσp=x2p2=222\sigma_x\sigma_p = \sqrt{\langle x^2 \rangle\langle p^2\rangle} = \frac{\sqrt 2\hbar}2\geq \frac \hbar 2

2.25

ψ1(x)=mαemαx/2=Cemαx/2\psi_1(x) = \frac{\sqrt{m\alpha}}\hbar e^{-m\alpha |x| /\hbar^2} = C e^{-m\alpha |x| /\hbar^2}

ψ2(x)=Aeikx+Beikx={eikx+Reikxx0Teikxx>0\psi_2(x) =A e^{ikx} + B e^{-ikx} = \begin{cases} e^{ikx} + Re^{-ikx} &x \leq 0 \\T e^{ikx} & x > 0\end{cases}

1Cψ1,ψ2=1Cψ1ψ2dx=0(eikx+Reikx)emαx/2dx+0Teikxemαx/2dx=1ik+mα/2+Rikmα/2+Tikmα/21=R+T=0\begin{aligned}\frac{1}C\langle \psi_1 ,\psi_2 \rangle &= \frac{1}C\int \psi_1^* \psi_2 \,dx\\ &=\int_{-\infty}^0 ( e^{ikx} + Re^{-ikx}) e^{-m\alpha |x| /\hbar^2}\, dx + \int_0^\infty Te^{ikx}e^{-m\alpha |x| /\hbar^2}\, dx\\ &=\frac{-1}{ik + m\alpha /\hbar^2} + \frac{R}{ik - m\alpha /\hbar^2} + \frac{T}{ik - m\alpha /\hbar^2}\\ 1= R+T\quad &\\ & = 0 \end{aligned}

2.27

a

Case 1, where the wave function is even:

ψ(x)={Bekxx<aC(ekx+ekx)a<x<aBekxx>a\psi(x) = \begin{cases} Be^{kx} & x < -a\\ C (e^{kx} + e^{-kx}) & -a<x<a\\ B e^{-kx} & x > a\\ \end{cases}

Boundary condition (continuity):

Beak=C(eak+eak)Be^{-ak} = C(e^{-ak}+e^{ak})

Schorodinger Equation:

22md2ψdx2+α[δ(x+a)+δ(xa)]ψ=Eψ-\frac{\hbar^2}{2m} \frac{d^2\psi}{dx^2} + \alpha[\delta(x+a)+\delta(x-a)]\psi = E\psi

take the integral on [aε,a+ε][-a-\varepsilon,-a+\varepsilon] and [aε,a+ε][a-\varepsilon,a+\varepsilon] , and let ε0\varepsilon \to 0 :

22mdψdx+αδ(x+a)dx+αδ(xa)dx=Eψdx-\frac{\hbar^2}{2m} \frac{d\psi}{dx} + \alpha\int \delta(x+a) dx + \alpha \int \delta(x-a) dx = E\int \psi dx

Δ(dψdx)a=2m2limε0aεa+εαδ(x+a)ψ(x)dx=2mα2ψ(a)\Delta \left(\frac{d\psi}{dx}\right)\Bigg|_{-a} = \frac{2m}{\hbar^2} \lim_{\varepsilon\to 0} \int_{-a-\varepsilon}^{-a+\varepsilon} \alpha \delta(x+a)\psi(x)\, dx = -\frac{2m\alpha}{\hbar^2}\psi(-a)

The same applies at aa :

Δ(dψdx)a=2mα2ψ(a)\Delta \left(\frac{d\psi}{dx}\right)\Bigg|_{a} = -\frac{2m\alpha}{\hbar^2}\psi(a)

According to the form of ψ\psi :

dψdx={Bkekxx<aC(kekxkekx)a<x<aBkekxx>a\frac{d\psi}{dx} = \begin{cases} Bke^{kx} & x < -a\\ C(ke^{kx} -ke^{-kx})& -a<x<a\\ -Bke^{-kx} & x > a\\ \end{cases}

dψdxa=C(keakkeak)dψdxa+=BkeakΔ(dψdx)a=BkeakC(keakkeak)\begin{aligned} \frac{d\psi}{dx}\Bigg|_{a^-} &= C(ke^{ak} -ke^{-ak})\\ \frac{d\psi}{dx}\Bigg|_{a^+} &= -Bke^{-ak}\\ \therefore \Delta \left(\frac{d\psi}{dx}\right)\Bigg|_{a} &= -Bke^{-ak} - C(ke^{ak} -ke^{-ak}) \end{aligned}

The same appies at a-a :

Δ(dψdx)a=Bkeak+C(keakkeak)\Delta \left(\frac{d\psi}{dx}\right)\Bigg|_{-a} = -Bke^{-ak} + C(ke^{-ak} -ke^{ak})\\

Solve the equation:

{2mα2ψ(a)=BkeakC(keakkeak)2mα2ψ(a)=Bkeak+C(keakkeak)\begin{cases}-\frac{2m\alpha}{\hbar^2}\psi(a) = -Bke^{-ak} - C(ke^{ak} -ke^{-ak})\\ -\frac{2m\alpha}{\hbar^2}\psi(-a) = -Bke^{-ak} + C(ke^{-ak} -ke^{ak}) \end{cases}

    2mα2C(eak+eak)=2Ckeakmα2(e2ak+1)=ke2ak#1\begin{aligned}\implies \frac{-2m\alpha}{\hbar^2} C(e^{ak}+e^{-ak}) &= -2Cke^{ak}\\ \frac{m\alpha}{\hbar^2}( e^{2ak} +1 ) &= k e^{2ak}\qquad \# 1 \end{aligned}

E=2k22mE = -\frac{\hbar^2 k^2}{2m}

Case 2, where the wave function is odd:

ψ(x)={Bekxx<aC(ekxekx)a<x<aBekxx>a\psi(x) = \begin{cases} Be^{kx} & x < -a\\ C (e^{kx} - e^{-kx}) & -a<x<a\\ -B e^{-kx} & x > a\\ \end{cases}

Boundary condition (continuity):

Beak=C(eakeak)Be^{-ak} = C(e^{-ak}-e^{ak})

Repeat the steps in case 1, we get:

mα2(e2ak1)=ke2ak#2\frac{m\alpha}{\hbar^2}( e^{2ak} -1 ) = k e^{2ak}\qquad \# 2

E=2k22mE = -\frac{\hbar^2 k^2}{2m}

The number of bound states are the number of solutions to equations #1 and #2 accordingly.

b

  1. When α=2/ma\alpha = \hbar^2/ma :
    For case 1:

ak=1+e2ak,ak1.109ak = 1+ e^{-2ak},\quad ak\simeq 1.109

For case 2:

ak=1e2ak,ak0.797ak = 1- e^{-2ak},\quad ak \simeq 0.797

  1. When α=2/4ma\alpha = \hbar^2/4ma :
    For case 1:

2ak=1+e2ak,ak0.6402ak = 1+ e^{-2ak},\quad ak\simeq 0.640

For case 2:

2ak=1e2ak,ak=0not possible2ak = 1- e^{-2ak},\quad ak = 0\quad \text{not possible}

The according energy states can be caculated with E=2k2/2mE = -\hbar^2k^2/2m .

c

  1. When a0a\to 0 , there could only be one bound state, which takes the even wave function.

1+e2ak=2kmα    lima0k=2mα2    E=2mα22 1 + e^{-2ak} = \frac{\hbar^2k}{m\alpha}\\ \implies \lim_{a\to 0} k = \frac{2m\alpha}{\hbar^2}\implies E = -\frac{2m\alpha^2}{\hbar^2}

The energy is the same to where V(x)=2αδ(x)V(x) =- 2\alpha\delta(x) , as if the two heaps of the delta functions are now merged into one.

  1. When aa\to \infty, there are two bound states.
    For case 1:

1+e2ak=2kmα    limak=mα2    E=mα2221 +e^{-2ak} = \frac{\hbar^2k}{m\alpha}\\ \implies \lim_{a\to \infty} k = \frac{m\alpha}{\hbar^2}\implies E = -\frac{m\alpha^2}{2\hbar^2}

For case 2:

1e2ak=2kmα    limak=mα2    E=mα2221- e^{-2ak} = \frac{\hbar^2k}{m\alpha}\\ \implies \lim_{a\to \infty} k = \frac{m\alpha}{\hbar^2}\implies E = -\frac{m\alpha^2}{2\hbar^2}

2.28

Consider the particle traveling from left to right, we have the wave function:

ψ(x)={Aeikx+Beikxx<aCeikx+Deikxa<x<aFeikxx>a\psi(x) = \begin{cases} Ae^{ikx} + Be^{-ikx} & x < -a\\ C e^{ikx} + De^{-ikx} & -a<x<a\\ F e^{ikx} & x > a \end{cases}

Boundary conditions(continuity):

Aeiak+Beiak=Ceiak+DeiakCeiak+Deiak=Feiak\begin{aligned} Ae^{-iak} + Be^{iak} &= C e^{-iak} + De^{iak}\\ Ce^{iak} + De^{-iak} &= Fe^{iak}\end{aligned}

let β=e2iak\beta = e^{-2iak}

βA+B=βC+DC+βD=F\begin{align}\beta A+B &= \beta C+D\\C+\beta D &= F\end{align}

Δψa=mα2ψ(a)\Delta \psi'|_{-a} = - \frac{m\alpha}{\hbar^2}\psi(-a) :

(CikAik)eika(DikBik)eika=mα2(Aeika+Beika)(Cik - Aik)e^{-ika} - (Dik -Bik)e^{ika} = -\frac{m\alpha}{\hbar^2}(Ae^{-ika}+Be^{ika})

β(CA)DB=imαk2(βA+B)\begin{align} \beta (C-A) - D -B& = \frac{im\alpha}{k\hbar^2}(\beta A+ B)\\\end{align}

Δψa=mα2ψ(a)\Delta \psi'|_{a} = - \frac{m\alpha}{\hbar^2}\psi(a) :

(FC)ikeika+Dikeika=mα2Fika(F-C)ike^{ika} + Dike^{-ika} = -\frac{m\alpha}{\hbar^2} F^{ika}

FC+βD=imαk2F\begin{align}F-C +\beta D = \frac{im\alpha}{k\hbar^2} F\end{align}

let γ=imαk2\gamma = \frac{im\alpha}{k\hbar^2}

According to equation (1) to (4) and assume A=1A = 1 for computational ease:

[1β1001β11γβ1001β1γ][BCDF]=[β0(γ+1)β0]\begin{bmatrix} 1 &-\beta &-1 &0\\ 0 &1 &\beta &-1\\ -1-\gamma & \beta &-1 &0\\ 0 &-1 &\beta &1-\gamma \end{bmatrix} \begin{bmatrix} B\\ C\\ D\\ F\end{bmatrix} =\begin{bmatrix} -\beta\\ 0\\ (\gamma+1)\beta\\ 0 \end{bmatrix}

T=F2A2=F2T = \frac{|F|^2}{|A|^2} = |F|^2

这周作业是我抄答案都懒得抄完的level. 最后两题对着答案写的都写不明白 , 用 mathematica 倒腾半天才算出来. 🥲🥲🥲


Quantom Mechanics Week 4
https://blog.jacklit.com/2025/03/17/qm_hw4/
作者
Jack H
发布于
2025年3月17日
许可协议