Quantom Mechanics 5

QMHW 5

2.34, 2.47, 2.52
3.2, 3.4, 3.13, 3.32
3.23, 3.26, 3.37, 3.46

2.34

a

The schrodinger equation is

{22m2ψ=Eψx<022m2ψ+V0ψ=Eψx>0 \begin{cases}-\frac{\hbar^2}{2m} \nabla^2 \psi = E \psi & x<0 \\-\frac{\hbar^2}{2m} \nabla^2 \psi + V_0 \psi = E \psi & x>0 \end{cases}

  1. E0E \leq 0
    • When x<0x<0, let κ=2mE\kappa = \frac{\sqrt{-2mE}}{\hbar}, the wave function is ψ(x)=Beκx\psi(x) = Be^{\kappa x} , there is no reflection for a wave traveling from left to right.
    • When x>0x>0, let l=2m(V0E)l = \frac{\sqrt{2m(V_0 -E)}}{\hbar}, the wave function is ψ(x)=Celx\psi(x) = Ce^{-lx}, there is no reflection.
  2. E>0E > 0
    • When x<0x<0, let k=2mEk = \frac{\sqrt{2mE}}{\hbar}, the wave function is ψ(x)=Aeikx+Beikx\psi(x) = Ae^{ikx} + Be^{-ikx}.
    • When x>0x>0, let l=2m(V0E)l = \frac{\sqrt{2m(V_0 -E)}}{\hbar}, the wave function is ψ(x)=Celx\psi(x) = Ce^{-lx}.
      The continuity of ψ,dψ/dx\psi, d\psi/dx shows:

A+B=CikAikB=lCA+B = C\\ ikA -ikB = -lC

The reflection coefficient is R=1R = 1

b

E>V0E> V_0

  • x<0,ψ=Aeikx+Beikxx< 0, \psi = Ae^{ikx} +Be^{-ikx}
  • x>0,ψ=Cilx+Dilxx>0,\psi = C^{ilx} + D^{-ilx}
    The continuity of ψ,dψ/dx\psi, d\psi/dx shows:

A+B=C+DAkBk=ClDlA+B = C+D \\ Ak - Bk = Cl - Dl

Assume that D=0D = 0, then we have R=(klk+l)2R = (\frac{k-l}{k+l})^2

c

  1. E>V0E> V_0
    The speed of the quantom is

{v0=EV02mx>0v1=E2mx<0\begin{cases}v_0 = \sqrt\frac{E - V_0}{2m}& x>0\\v_1 = \sqrt\frac{E}{2m} & x<0\end{cases}

T=ψψdxψψdx=t0t0+δtψψv0dtt0t0+δtψψv1dt=v0v1C2A2T = \frac {\int \psi^* \psi dx}{\int \psi^* \psi dx} = \frac {\int_{t_0}^{t_0 + \delta t} \psi^* \psi \,v_0dt}{\int_{t_0}^{t_0 + \delta t} \psi^* \psi \,v_1dt} = \frac{v_0}{v_1} \frac{|C|^2}{|A|^2}

  1. E<V0E<V_0
    Since T+R=1T+R =1 and R=1R = 1, then T=0T=0

d

T=4lk(k+l)2R=(kl)2(k+l)2T+R=1T = \frac{4lk}{(k+l)^2}\\ R = \frac{(k-l)^2}{(k+l)^2}\\ T+R = 1

2.47

2.52

sech(x)=2ex+ex\mathrm{sech} (x) = \frac{2}{e^x + e^{-x}}

a

b

A2sech2(ax)dx=2A2/a    A=a2A^2 \int_{-\infty}^\infty \mathrm{sech}^2(ax) dx = 2 A^2/a\implies A = \sqrt \frac{a}2

ψ0\psi_0 does satsify the schrodinger equation.

c

The derivitive formula of sech\mathrm{sech} is ddxtanh(ax)=asech2(ax)\frac{d}{dx}\mathrm{tanh}(ax) = a\mathrm{sech}^2(ax)

dψkdx=Aeikxik+a[a2sech2(ax)k2aiktanh(ax)]\frac{d\psi_k}{dx} = \frac{A e^{ikx}}{ik+a} [-a^2 \mathrm{sech}^2(ax) - k^2 - aik\tanh (ax)]

d2ψkdx2=Aeikxik+a[a2iksech(ax)ik3+ak2tanh(ax)+2a3sech2(ax)tanh(ax)a2iksech2(ax)]\frac{d^2\psi_k}{dx^2} =\frac{A e^{ikx}}{ik+a}[-a^2ik \mathrm{sech} (ax) - ik^3 +ak^2\tanh(ax) +2a^3 \mathrm{sech}^2(ax)\tanh(ax) -a^2 ik \mathrm{sech}^2(ax)]

It satisfies the schrodinger equation.

3.2

a

ff needs to be square integrable in (0,1)(0,1) , f2(x)=x2vf^2(x) = x^{2v} ,

01x2vdx<    12<v\int_0^1 x^{2v} dx < \infty \implies -\frac 1 2<v

b

v=1/2>1/2v = 1/2 > -1/2, ff is in Hilbert space.
v=3/2>1/2v = 3/2 > -1/2, ff is in Hilbert space.
v=1/21/2v = -1/2 \leq -1/2, ff is not in Hilbert space.

3.4

a

for hermitian Q1,Q2Q_1,Q_2 and $ \forall f,g$

f(Q1+Q2)g=fQ1g+f,Q2g=Q1fg+Q2fg=(Q1+Q2)fg\braket{f|(Q_1+Q_2)g} = \braket{f|Q_1g}+ \braket{f,Q_2g} = \braket{Q_1f|g}+\braket{Q_2f|g} = \braket{(Q_1+Q_2)f|g}

b

α(Q^f)=(αQ^f)    αR\alpha (\hat Q f)^* = (\alpha\hat Q f)^*\implies \alpha\in \R

c

Q^1Q^2=Q^2Q^1\hat Q_1\hat Q_2 = \hat Q_2 \hat Q_1

d

$\hat x = x $ is real, thus a hermitian operator.

fH^g=f(22m2g+Vg)dx=Vfg(22m2f)gdx=H^fg\begin{aligned}\braket{f|\hat H g} &=\int f^* (-\frac{\hbar^2}{2m}\nabla^2 g + Vg) \, dx \\ & = \int V f^* g -( \frac{\hbar^2}{2m}\nabla^2 f)^*gdx \\ & = \braket{\hat H f|g} \end{aligned}

3.13

Notice that

Ψ(x,t)=12πeipx/Φ(p,t)dp\Psi(x,t) = \frac{1}{\sqrt{2\pi\hbar}}\int_{-\infty}^\infty e^{ipx/\hbar}\Phi(p,t) dp

x=ΨxΨdx=12π{[eip1x/Φdp1]x[eipx/Φdp]}dx=12π{[eip1x/Φdp1][xeipx/Φdp]}dx=12π{[eip1x/Φdp1][(ip)eipx/Φdp]}dxsince ipis hermitan, therefore:=12π{[eip1x/Φdp1][eipx/(ip)Φdp]}dx=12πei(pp1)(x/)d(x/)  Φ(ip)Φdp1dp=δ(pp1)Φ(ip)Φdp1dp=Φ(ip)Φdp\begin{aligned} \braket x & = \int \Psi^* x \Psi dx \\ & =\frac{1}{2\pi\hbar} \int\left\{ \left[\int e^{ip_1x/\hbar}\Phi dp_1\right]^* x \left[\int e^{ipx/\hbar}\Phi dp\right] \right\}dx\\ & = \frac{1}{2\pi\hbar} \int\left\{ \left[\int e^{-ip_1x/\hbar}\Phi^* dp_1\right] \left[\int xe^{ipx/\hbar}\Phi dp\right] \right\}dx\\ & = \frac{1}{2\pi\hbar} \int\left\{ \left[\int e^{-ip_1x/\hbar}\Phi^* dp_1\right] \left[\int (-i\hbar \frac{\partial}{\partial p})e^{ipx/\hbar}\Phi dp\right] \right\}dx\\ & \qquad \text{since } i\hbar \frac{\partial}{\partial p} \text{is hermitan, therefore:}\\ & = \frac{1}{2\pi\hbar} \int\left\{ \left[\int e^{-ip_1x/\hbar}\Phi^* dp_1\right] \left[\int e^{ipx/\hbar}(i\hbar \frac{\partial}{\partial p})\Phi dp\right] \right\}dx\\ &= \int\frac{1}{2\pi} e^{i(p-p_1)(x/\hbar)}d(x/\hbar) \;\int\int \Phi^* (i\hbar \frac{\partial}{\partial p})\Phi dp_1dp\\ &=\int\int \delta(p-p_1)\Phi^* (i\hbar \frac{\partial}{\partial p})\Phi dp_1dp\\ & = \int \Phi^* (i\hbar \frac{\partial}{\partial p})\Phi dp \qquad \square \end{aligned}

3.32

Q^=Q^\hat Q^\dag = - \hat Q

a

Q^=ψQ^ψ=Q^ψψ=Q^ψψQ^=Q^ψψ=Q^ψψ=ψQ^ψ=ψQ^ψ=Q^\braket {\hat Q} = \braket{\psi|\hat Q\psi}= \braket{\hat Q^\dag\psi|\psi} = \braket{-\hat Q\psi|\psi}\\ \braket {\hat Q}^* = \braket{-\hat Q\psi|\psi}^* = \braket{-\hat Q^*\psi^*|\psi^*} = \braket{\psi | -\hat Q\psi} = -\braket{\psi|\hat Q\psi} = -\braket{\hat Q}

if Q^=c\braket{\hat Q} = c and c=cc^* = -c , then c=ai,aRc = a i ,a \in \R

b

ψ\psi is an eigenfunction and λ\lambda being its eigenvalue.

Q^ψ=λψψQ^ψ=Q^ψψ=λψψ=ψλψ=λψψ\hat Q \psi = \lambda\psi\\ \begin{aligned} \braket {\psi| \hat Q \psi } &= \braket{-\hat Q \psi| \psi} = -\lambda^* \braket{\psi|\psi}\\ &=\braket{\psi| \lambda\psi} = \lambda\braket{\psi|\psi}\end{aligned}

λ=λ\therefore \lambda = -\lambda^*

c

Q^ψ1=λ1ψ1,Q^ψ2=λ2ψ2\hat Q \psi_1 = \lambda_1\psi_1,\hat Q\psi_2 = \lambda_2\psi_2

ψ1ψ2=1λ2ψ1λ2ψ2=1λ2ψ1Q^ψ2=1λ2Q^ψ1ψ2=λ1λ2ψ1ψ2\braket{\psi_1|\psi_2} = \frac{1}{\lambda_2} \braket{\psi_1|\lambda_2\psi_2}=\frac{1}{\lambda_2}\braket{\psi_1|\hat Q\psi_2} = \frac{1}{\lambda_2}\braket{-\hat Q\psi_1|\psi_2} = \frac{\lambda_1}{\lambda_2} \braket{\psi_1|\psi_2}

This remains true for any eigenfunctions ψ1,ψ2\psi_1,\psi_2 , therefore ψ1ψ2=0\braket{\psi_1|\psi_2} = 0 is needed when λ1λ2\lambda_1 \neq \lambda_2

d

ψ(H^K^K^H^)ψ=ψH^K^ψK^H^ψ=ψH^K^ψψK^H^ψ=H^ψK^ψK^ψH^ψ=K^H^ψψH^K^ψψ=(K^H^H^K^)ψψnotice :(H^K^K^H^)=(K^H^H^K^)\begin{aligned} \braket{\psi|(\hat H \hat K - \hat K\hat H)\psi} &= \braket{\psi|\hat H \hat K \psi - \hat K \hat H \psi}\\ &= \braket{\psi|\hat H \hat K \psi} - \braket{\psi|\hat K \hat H \psi}\\ &= \braket{\hat H \psi| \hat K \psi} - \braket{\hat K \psi| \hat H \psi}\\ &=\braket{\hat K\hat H \psi| \psi} - \braket{\hat H \hat K \psi| \psi}\\ &= \braket{(\hat K\hat H - \hat H\hat K)\psi| \psi}\\ \text{notice }&: (\hat H \hat K - \hat K\hat H) = -(\hat K\hat H - \hat H\hat K) \end{aligned}

e

if Q^=A^+B^\hat Q = \hat A + \hat B

Q^ψψ=ψQ^ψ=ψA^ψ+ψB^ψ=A^ψψ+B^ψψ=(A^B^)ψψ    Q^=A^B^\braket{\hat Q^\dag \psi | \psi} = \braket{\psi| \hat Q\psi} = \braket{\psi|\hat A \psi}+\braket{\psi|\hat B \psi} = \braket{\hat A\psi|\psi}+\braket{-\hat B \psi|\psi} = \braket{(\hat A - \hat B) \psi|\psi}\\ \implies \hat Q^\dag = \hat A - \hat B\qquad

A^=Q^+Q^2,  B^=Q^Q^2\therefore \hat A = \frac{\hat Q + \hat Q^\dag }2,\; \hat B = \frac{\hat Q - \hat Q^\dag}{2}

3.23

notice that αα=1,P^2=(αα)(αα)=αααα=αα=P^\braket{\alpha|\alpha} = 1 , \quad \hat P^2 = (\ket{\alpha}\bra{\alpha})(\ket{\alpha}\bra{\alpha}) = \ket{\alpha}\braket{\alpha|\alpha}\bra{\alpha} = \ket{\alpha}\bra{\alpha} = \hat P
λ2ψ=P^2ψ=P^ψ=λψ    λ2=λ    λ=0 or 1\lambda^2\psi = \hat P^2 \psi = \hat P \psi = \lambda \psi\implies \lambda^2 = \lambda\implies \lambda = 0 \text{ or } 1
when λ=0\lambda = 0, ψspan{α}\psi \in \mathrm{span}\{\ket{\alpha}\}^{\bot}
when λ=1\lambda = 1, ψspan{α}\psi \in \mathrm{span}\{\ket{\alpha}\}

3.26

a

the bra is the conjugate transpose of ket, therefore:
$\bra{\alpha} = -i \bra 1 - 2 \bra 2 + i \bra 3 \bra \beta = -i \bra 1 + 2 \bra 3$

b

αβ=1+2i,βα=12i    βα=αβ\braket{\alpha | \beta} = -1 + 2i , \quad \braket{\beta|\alpha} = -1 -2i \implies \braket{\beta|\alpha} = \braket{\alpha | \beta}^*

c

A=[102i2i04102i]A = \begin{bmatrix} 1 & 0 &2i\\ 2i &0 &-4\\ -1 &0 &-2i \end{bmatrix}

it is not hermitian.

3.37

Virial Theorem

ddtxp=2TxCx\frac{d}{dt}\braket{xp} = 2\braket T - \braket{x\frac{\partial C}{\partial x}}

3.46

改天补上 😭


Quantom Mechanics 5
https://blog.jacklit.com/2025/04/07/qm_hw5/
作者
Jack H
发布于
2025年4月7日
许可协议