QMHW 5
2.34, 2.47, 2.52
3.2, 3.4, 3.13, 3.32
3.23, 3.26, 3.37, 3.46
2.34
a
The schrodinger equation is
{−2mℏ2∇2ψ=Eψ−2mℏ2∇2ψ+V0ψ=Eψx<0x>0
- E≤0
- When x<0, let κ=ℏ−2mE, the wave function is ψ(x)=Beκx , there is no reflection for a wave traveling from left to right.
- When x>0, let l=ℏ2m(V0−E), the wave function is ψ(x)=Ce−lx, there is no reflection.
- E>0
- When x<0, let k=ℏ2mE, the wave function is ψ(x)=Aeikx+Be−ikx.
- When x>0, let l=ℏ2m(V0−E), the wave function is ψ(x)=Ce−lx.
The continuity of ψ,dψ/dx shows:
A+B=CikA−ikB=−lC
The reflection coefficient is R=1
b
E>V0
- x<0,ψ=Aeikx+Be−ikx
- x>0,ψ=Cilx+D−ilx
The continuity of ψ,dψ/dx shows:
A+B=C+DAk−Bk=Cl−Dl
Assume that D=0, then we have R=(k+lk−l)2
c
- E>V0
The speed of the quantom is
⎩⎨⎧v0=2mE−V0v1=2mEx>0x<0
T=∫ψ∗ψdx∫ψ∗ψdx=∫t0t0+δtψ∗ψv1dt∫t0t0+δtψ∗ψv0dt=v1v0∣A∣2∣C∣2
- E<V0
Since T+R=1 and R=1, then T=0
d
T=(k+l)24lkR=(k+l)2(k−l)2T+R=1
2.47
2.52
sech(x)=ex+e−x2
a
b
A2∫−∞∞sech2(ax)dx=2A2/a⟹A=2a
ψ0 does satsify the schrodinger equation.
c
The derivitive formula of sech is dxdtanh(ax)=asech2(ax)
dxdψk=ik+aAeikx[−a2sech2(ax)−k2−aiktanh(ax)]
dx2d2ψk=ik+aAeikx[−a2iksech(ax)−ik3+ak2tanh(ax)+2a3sech2(ax)tanh(ax)−a2iksech2(ax)]
It satisfies the schrodinger equation.
3.2
a
f needs to be square integrable in (0,1) , f2(x)=x2v ,
∫01x2vdx<∞⟹−21<v
b
v=1/2>−1/2, f is in Hilbert space.
v=3/2>−1/2, f is in Hilbert space.
v=−1/2≤−1/2, f is not in Hilbert space.
3.4
a
for hermitian Q1,Q2 and $ \forall f,g$
⟨f∣(Q1+Q2)g⟩=⟨f∣Q1g⟩+⟨f,Q2g⟩=⟨Q1f∣g⟩+⟨Q2f∣g⟩=⟨(Q1+Q2)f∣g⟩
b
α(Q^f)∗=(αQ^f)∗⟹α∈R
c
Q^1Q^2=Q^2Q^1
d
$\hat x = x $ is real, thus a hermitian operator.
⟨f∣H^g⟩=∫f∗(−2mℏ2∇2g+Vg)dx=∫Vf∗g−(2mℏ2∇2f)∗gdx=⟨H^f∣g⟩
3.13
Notice that
Ψ(x,t)=2πℏ1∫−∞∞eipx/ℏΦ(p,t)dp
⟨x⟩=∫Ψ∗xΨdx=2πℏ1∫{[∫eip1x/ℏΦdp1]∗x[∫eipx/ℏΦdp]}dx=2πℏ1∫{[∫e−ip1x/ℏΦ∗dp1][∫xeipx/ℏΦdp]}dx=2πℏ1∫{[∫e−ip1x/ℏΦ∗dp1][∫(−iℏ∂p∂)eipx/ℏΦdp]}dxsince iℏ∂p∂is hermitan, therefore:=2πℏ1∫{[∫e−ip1x/ℏΦ∗dp1][∫eipx/ℏ(iℏ∂p∂)Φdp]}dx=∫2π1ei(p−p1)(x/ℏ)d(x/ℏ)∫∫Φ∗(iℏ∂p∂)Φdp1dp=∫∫δ(p−p1)Φ∗(iℏ∂p∂)Φdp1dp=∫Φ∗(iℏ∂p∂)Φdp□
3.32
Q^†=−Q^
a
⟨Q^⟩=⟨ψ∣Q^ψ⟩=⟨Q^†ψ∣ψ⟩=⟨−Q^ψ∣ψ⟩⟨Q^⟩∗=⟨−Q^ψ∣ψ⟩∗=⟨−Q^∗ψ∗∣ψ∗⟩=⟨ψ∣−Q^ψ⟩=−⟨ψ∣Q^ψ⟩=−⟨Q^⟩
if ⟨Q^⟩=c and c∗=−c , then c=ai,a∈R
b
ψ is an eigenfunction and λ being its eigenvalue.
Q^ψ=λψ⟨ψ∣Q^ψ⟩=⟨−Q^ψ∣ψ⟩=−λ∗⟨ψ∣ψ⟩=⟨ψ∣λψ⟩=λ⟨ψ∣ψ⟩
∴λ=−λ∗
c
Q^ψ1=λ1ψ1,Q^ψ2=λ2ψ2
⟨ψ1∣ψ2⟩=λ21⟨ψ1∣λ2ψ2⟩=λ21⟨ψ1∣Q^ψ2⟩=λ21⟨−Q^ψ1∣ψ2⟩=λ2λ1⟨ψ1∣ψ2⟩
This remains true for any eigenfunctions ψ1,ψ2 , therefore ⟨ψ1∣ψ2⟩=0 is needed when λ1=λ2
d
⟨ψ∣(H^K^−K^H^)ψ⟩notice =⟨ψ∣H^K^ψ−K^H^ψ⟩=⟨ψ∣H^K^ψ⟩−⟨ψ∣K^H^ψ⟩=⟨H^ψ∣K^ψ⟩−⟨K^ψ∣H^ψ⟩=⟨K^H^ψ∣ψ⟩−⟨H^K^ψ∣ψ⟩=⟨(K^H^−H^K^)ψ∣ψ⟩:(H^K^−K^H^)=−(K^H^−H^K^)
e
if Q^=A^+B^
⟨Q^†ψ∣ψ⟩=⟨ψ∣Q^ψ⟩=⟨ψ∣A^ψ⟩+⟨ψ∣B^ψ⟩=⟨A^ψ∣ψ⟩+⟨−B^ψ∣ψ⟩=⟨(A^−B^)ψ∣ψ⟩⟹Q^†=A^−B^
∴A^=2Q^+Q^†,B^=2Q^−Q^†
3.23
notice that ⟨α∣α⟩=1,P^2=(∣α⟩⟨α∣)(∣α⟩⟨α∣)=∣α⟩⟨α∣α⟩⟨α∣=∣α⟩⟨α∣=P^
λ2ψ=P^2ψ=P^ψ=λψ⟹λ2=λ⟹λ=0 or 1
when λ=0, ψ∈span{∣α⟩}⊥
when λ=1, ψ∈span{∣α⟩}
3.26
a
the bra is the conjugate transpose of ket, therefore:
$\bra{\alpha} = -i \bra 1 - 2 \bra 2 + i \bra 3 \bra \beta = -i \bra 1 + 2 \bra 3$
b
⟨α∣β⟩=−1+2i,⟨β∣α⟩=−1−2i⟹⟨β∣α⟩=⟨α∣β⟩∗
c
A=12i−10002i−4−2i
it is not hermitian.
3.37
Virial Theorem
dtd⟨xp⟩=2⟨T⟩−⟨x∂x∂C⟩
3.46
改天补上 😭